- 1. Show that the uniform limit of
 a sequence of continuous functions
 is continuous, and hence that if $m(E) < +\infty$ and $f: E \to |R|$ to measurable then, $\forall \eta > 0$, \exists closed set $F \subseteq E$ with $m(E \setminus F) < \eta$ such that $f|_F: F \to |R|$ to continuous.
- 2. Let $F = \bigcup_{n=1}^{\infty} F_n$, disjoint closed sets F_i ,..., F_n . Let $f: F \to IR$ he such that f/F_n is Cto, Y_n . Show that f is Cto.
- 3. Let $Fn \subseteq (n, n+1)$ be closed $(R \mid Fn \circ p)$ $\forall n \in \mathbb{N}$, and let $F = \bigcup_{n \in \mathbb{N}} Fn$. 8 how that $f : F \rightarrow \mathbb{R}$ is continuous if each $f|_{Fn}$ is cts. (Can the condition $Fn \subseteq (n, n+1)$ be weakened to $Fn \subseteq \mathbb{R}$?)

4. Let $G = \widetilde{\bigcup}_{n=1} I_n$, comfable disjoint open intern In, and let F: RIG. Let X<Y<Z with X, Z ∈ F and y ∈ In = (an, bn). Show hat an EF, bn EF, X San, and by SJ 5. Let G, In, F he as in Q4, and let f: IR-IR be such har $J|_F$ and $f|_{\overline{I}_n}$. be continuous, Yn & M (In denotes the closure of In). Inproce further That the graph of $f|_{\widehat{T}}$ is a line-segment. Show that f is continuous (by symmetry, held only 8how that I is right-containing at each $\chi_0 \in \mathbb{R}$: $\lim_{\chi \to \chi_0 + \chi} f(\chi) = f(\chi), i.e. \forall \xi \neq 0$] $\begin{cases} 50 \text{ min } \chi \to \chi_0 + \chi_0 \\ |f(\chi) - f(\chi)| < \xi \quad \forall \chi \in \chi_0, \chi_0 + \delta \end{cases}$ This is evident if 20EG (SOF NEW SIX 20 (In). We may here assume that x0 EF, and have are three cases

 $\begin{array}{c} (3) \exists \ \, \int \ \, \int \ \, \int \ \, \left[\ \, \left(\ \, \right) \right] \right] \right] \right] \, \, \right] \, \, \\ (b) \ \exists \ \, \int \ \, \int \ \, \left[\ \, \left[\ \, \left(\ \, \left(\ \, \left(\ \, \right) \right) \right] \right] \, \, \right] \, \, \\ (b) \ \exists \ \, \int \ \, \int \ \, \left[\ \, \left(\ \, \left(\ \, \left(\ \, \right) \right) \right] \, \, \, \\ (b) \ \exists \ \, \int \ \, \left[\ \, \left(\ \, \left(\ \, \left(\ \, \right) \right) \right] \, \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \left(\ \, \right) \right) \right] \, \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \right] \, \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \right) \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \right) \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \right] \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \, \right] \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \, \right] \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \, \right] \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \, \right] \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \, \right] \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \, \right] \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \right] \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \left(\ \, \right) \, \, \right) \, \, \right] \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \, \right] \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \right] \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \, \right] \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \, \left(\ \, \right) \, \, \right] \, \, \right] \, \, \right] \, \, \\ (b) \ \exists \ \, \left[\ \, \left(\ \,$ (c) (No, No+8) mitusets F and G, 4570. Hint: For care (a), you we the empirish of fly. For case (b), you use the containing of f [Xo, Xot 8] For care (4), let £70.] 5070 3md hat contininous at 70. By the assumption is careful consider smaller 5,70 if necessary, we may assume that 20+56 EF. Show that if 21 + Gr (26,26+6), Men ∃! n∈ N with XE (an, bn). Since No, No+ Eo FF, one has (?) xo≤an<x∠bn≤xo+fo and an, bn ∈ F, f(.) - for 0) < E at an, bn 4 so at x. 6. Do he same en Q5 but check me liftcontinuity in place of the Vight-continuity"